Postcards from a Cosmic Traveller: Thomas Ruff's Images of Space

John G Hatch
Western University (London, Canada)

Cosmic Explorations: at the Intersection of Science, Space, Art, and Culture
The 11th Conference on the Inspiration of Astronomical Phenomena
20- 23 September 2022, CalTech, Pasadena, California
"I have an affinity for astronomy, so from time-to-time astronomical issues show up in my work."

Thomas Ruff
Zeitungsfoto (Newspaper Photographs), 1990-1991

Thomas Ruff, Zeitungsfoto 052, 1990

Thomas Ruff, Zeitungsfoto 112, 1990
press++ (2015-)

Thomas Ruff, press++ 01.16, 2015
I often compare this to the tests made by a scientific researcher. In order to prove his thesis, he must show the evidence of his argument. This is similar to my approach. Every photograph is an assertion I put forward. To prove its correctness and quality, I have to take several photos, and only after a series of these can I say whether I am right or wrong.

Thomas Ruff, 2012
Bernd and Hilla Becher, Water Towers, 1972
Bernd and Hilla Becher, Blast Furnaces, 1965-1992

Anselm Kiefer, Your Golden Hair, Margarete, 1981
Thomas Ruff, Interior (1A), 1979

Thomas Ruff, Interior (3E), 1983
Thomas Ruff, Portrait (L Coelevy), 1988

Thomas Ruff, Portrait (S Buch), 1988
Musée d’art moderne et contemporain de Saint-Étienne Métropole, Saint-Priest-en-Jarez, 2022
Candida Höfer, Royal Portuguese Cabinet of Reading, Rio de Janeiro, 2005

colour coupler print
140 by 178.4cm.; 55 1/8 by 71 1/4 in.
Thomas Struth, ALICE, CERN, Saint-Genis-Pouilly, 2019

inkjet print
270.6 x 230 cm.; 106 1/2 x 90 1/2 in.
Thomas Ruff, Portrait (P Stadtbäumer), 1988

Thomas Ruff, Portrait (R Huber), 1988
Erik Kessels, 24 hours in Photos, 2011
Wolfgang Tillmans, Transit of Venus, 2004

Mediocre photo of the Moon near Hatch residence
Thomas Ruff, Parkett No. 28, 1991

Two C-prints, 19 1/2 x 19 1/2", in transparent paper wrappers. The astronimical data are silk-screened on the front and back of the wrappers. Edition of 50 photos each, numbered and signed.
David Zwirner Gallery, Hong Kong, 2019
Thomas Ruff, Stars, 17h 38m/-30°, 1990

Thomas Ruff, Stars, 03h 09m/-20°, 1990
The first images I displayed in my studio horizontally, but it wasn’t satisfying. The horizontal format is a window, but the images I had in mind weren’t a window. I wanted the door, suggesting, “Put on a helmet, go out into space, become a Captain Kirk.” That’s why I made them vertical and as big as possible.

Thomas Ruff, 2005
Thomas Ruff, Cassini 10, 2009
Thomas Ruff, Cassini 31, 2009
Thomas Ruff, Cassini 16, 2008
Kazimir Malevich, Suprematist Construction, 1915-16

Kazimir Malevich, Black Cross, 1923
Thomas Ruff, Cassini 08, 2008
Thomas Ruff, Cassini 02, 2008
NASA’s pictures are all very high resolution, and there are countless images on their website. No wonder it’s the most popular site for images of space. The European Space Agency, for instance, is not as accessible. But NASA puts everything into public domain, and the issue of copyright doesn’t exist for them—perhaps because machines took all of the images and machines cannot have a copyright.

Thomas Ruff, 2013
Originally, ma.r.s. was made for my own private purposes. At first, I did not have the idea that it would become a new series. I was looking around NASA’s homepage, found the images made with the HiRISE camera (High Resolution Image Science Experiment), and I was blown away when I saw the image resolution. I then started to play with them.
The images come in long strips, and they’re black and white. I wanted to have them in colour. I sent an email to the people at the University of Arizona and asked: "Why aren’t you producing the images in colour?" Their response: "Too much data." Colour would be four times the amount of data. Since they were producing so many images, this would have resulted in bottlenecks when transmitting the data.
So I added colour to the images myself. I don’t remember why, but I also compressed them, and something strange happened: Suddenly, there appeared a pseudo perspective. It didn’t look as if you were viewing from the orbit. Instead it looked like a view from a plane. As a science fiction fan I liked that, because that’s the view the first human is going to have in 20, 30 or 40 years. At some point I started thinking I had something interesting. I had between five or ten images, and I really liked them. That then became ma.r.s.
Everybody looking at the pictures tells me "Thomas, you’re interested in painting here." But no, it’s not about painting. I’m interested in realism. The images are very realistic simply because of the precision of the camera. But at the same time, they’re absolutely fictional. I never worked on landscapes, and suddenly I had landscape images from very far away.
I also thought in these images I was dealing with a topic that currently is being discussed heavily in contemporary photography: What is fiction, what is real? The images have a bit of both. What is fiction and what is real - that’s not the main idea, but it’s also part of ma.r.s., and I like that.

Thomas Ruff, 2013

Musée d’art moderne et contemporain de Saint-Étienne
Métropole, Saint-Priest-en-Jarez, 2022
PSP_007779_2570, 24 March 2008, detail

Thomas Ruff, ma.r.s.15, 2011
In thinking of NASA pictures, everybody has in mind the fantastic photographs of intergalactic mist or stellar clusters made by the Hubble Space Telescope. In fact, colour is very common in astronomical photography. That has driven us to a very multicoloured conception of the universe… (laughs). But colours in space are relative. The various kinds of light as we see them are only a very small portion of the diversity of electromagnetic waves that exist in space. In colouring the Mars photographs, I sometimes used scientific references, and sometimes my imagination.

Thomas Ruff, 2013
Electromagnetic radiation in the universe ranges from $10,000$ to 10^{-17} meters in wavelength, but for the naked eye the visible spectrum is between 380 and 640 nanometers. A telescope might be able to capture a wider spectrum, but it would need technical additions to make that light visible. Radio telescopes are picking up electromagnetic waves you can't detect with the eye, and with certain tools you can also visualize them. So actually, if we want to look at space more accurately, we should use different prostheses and not only the camera. Photography is only a small part of our access to understanding things in space.

Thomas Ruff, 2017
PSP_002068_1510, 11 March 2007

Thomas Ruff, 3D ma.r.s 01, 2012