A search for main-belt comets in the Palomar Transient Factory survey

ADAM WASZCZAK¹, ERAN O. OFEK², ODED AHARONSON^{1,3}, SHRINIVAS R. KULKARNI⁴, DAVID POLISHOOK⁵, JAMES M. BAUER⁶, DAVID B. LEVITAN⁴, BRANIMIR SESAR⁴, RUSS LAHER⁶, JASON SURACE⁶ AND THE PTF TEAM

¹Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA
 ²Benoziyo Center for Astrophysics, Faculty of Physics, Weizmann Institute of Science, Rehovot, Israel
 ³Helen Kimmel Center for Planetary Science, Weizmann Institute of Science, Rehovot, Israel
 ⁴Division of Mathematics, Physics and Astronomy, California Institute of Technology, Pasadena, CA
 ⁵Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA
 ⁶Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA
 ⁷Spitzer Science Center, California Institute of Technology, Pasadena, CA

observable	comets	asteroids	
appearance (image)	extended, diffuse	point-source	
composition (spectrum)	ice-bearing	not ice-bearing	
orbital type	excited (large <i>a</i> , <i>e, i</i>)	stable (small <i>a, e, i</i>)	

comets

asteroid

260P/McNaught

2011 CR42

2309 Mr. Spock

Jenniskins 2006, in *Meteors and their parent comets*

Jewitt 2012, AJ 143, 66

observable	Damocloids ("dead comets")			
appearance (image)	extended, diffuse	point-source		
composition (spectrum)	ice-bearing	not ice-bearing		
orbital type	excited (large <i>a</i> , <i>e, i</i>)	stable (small <i>a, e, i</i>)		

observable	impacted asteroids			
appearance (image)	extended, diffuse	point-source		
composition (spectrum)	ice-bearing	not ice-bearing		
orbital type	excited (large <i>a</i> , <i>e, i</i>)	stable (small <i>a, e, i</i>)		

P/2010 A2 LINEAR

Jewitt et al. 2010, Nature 467, 817

596 Scheila

Jewitt et al. 2011, ApJL 733, L4

P/2012 F5 Gibbs

Stevenson et al. 2012, ApJ 759, 142

observable	main-belt comets			
appearance (image)	extended, diffuse	point-source		
composition (spectrum)	ice-bearing	not ice-bearing		
orbital type	excited (large <i>a</i> , <i>e, i</i>)	stable (small <i>a, e, i</i>)		

133P/Elst-Pizarro

Hsieh et al. 2010, MNRAS 408, 363

perihelion 2002

aphelion 2005

perihelion 2007

Jewitt 2012, AJ 143, 66 1.00.8 • 0.6 Eccentricity 0.4 main-belt comets 0.2 133P & 238P 0.0 2 5 3

Semimajor Axis [AU]

The Palomar Transient Factory (PTF) survey

- 60-second exposures
- 1.01-arcsec / pixel resolution
- 7.2 deg² mosaic
 (~20% of telescope's focal plane)
- 11 CCDs , 2048 imes 4096 each
- filters used:

Mould-R (600 - 720 nm) SDSS-g' (400 - 550 nm)

- down to $R \approx 20.5 \text{ mag} (5-\sigma)$
- 2-arcsec seeing typical
- 5-day cadence : supernova search
- 1-hour cadence : \sim 2000 deg² imaged 2× per night
- Science-data collection started March 2009
- Data processed and archived by IPAC (Infrared Processing and Analysis Center) @ Caltech

48-inch (1.2-m) Schmidt Telescope

The Palomar Transient Factory (PTF) survey

Searching for small bodies with known orbits

"kd-tree" application to sky surveys: Kubica et al. 2007, Icarus 189, 151

Searching for small bodies with known orbits

~20 million candidate small body observations

 $\sim\!$ 1000-point (3-year) ephemeris from JPL's HORIZONS integrator

Summary of observed known small bodies

	main-belt asteroids	Trojans & Hildas	comets	NEOs	TNOs	Centaurs
observations	2,013,279	50,056	1,052	6,586	454	336
unique objects	221,402	5,259	129	1,257	48	27
fraction of known	0.39	0.55	0.06	0.13	0.03	0.13

High cadence lightcurves \implies object spin rate, shape, binarity

Pilot study based on Feb-2010 imagery of the M44 field: Polishook et al. 2012, Asteroid rotation periods from PTF, MNRAS 421, 2094

High cadence lightcurves \implies object spin rate, shape, binarity

Pilot study based on Feb-2010 imagery of the M44 field: Polishook et al. 2012, Asteroid rotation periods from PTF, MNRAS 421, 2094

High cadence lightcurves \implies object spin rate, shape, binarity

Pilot study based on Feb-2010 imagery of the M44 field: Polishook et al. 2012, Asteroid rotation periods from PTF, MNRAS 421, 2094

34488 2000 SO135

High cadence lightcurves \implies object spin rate, shape, binarity

Pilot study based on Feb-2010 imagery of the M44 field: Polishook et al. 2012, Asteroid rotation periods from PTF, MNRAS 421, 2094

71238 2000 AL7

2048 known objects in PTF have \geq 20 observations/night on at least one night

High cadence lightcurves \implies object spin rate, shape, binarity

Pilot study based on Feb-2010 imagery of the M44 field: Polishook et al. 2012, Asteroid rotation periods from PTF, MNRAS 421, 2094

Distance-corrected magnitude depends on phase-angle (Sun-asteroid-Earth) and the following physical/surface properties (Hapke model)

- grain size
- grain scattering function
- grain porosity

- shadowing & coherent backscatter
- mean topographic slope
- mean object diameter

Distance-corrected magnitude depends on phase-angle (Sun-asteroid-Earth) and the following physical/surface properties (Hapke model)

- grain size
- grain scattering function
- grain porosity

- shadowing & coherent backscatter
- mean topographic slope
- mean object diameter

Distance-corrected magnitude depends on phase-angle (Sun-asteroid-Earth) and the following physical/surface properties (Hapke model)

- grain size
- grain scattering function
- grain porosity

- shadowing & coherent backscatter
- mean topographic slope
- mean object diameter

Distance-corrected magnitude depends on phase-angle (Sun-asteroid-Earth) and the following physical/surface properties (Hapke model)

- grain size
- grain scattering function
- grain porosity

- shadowing & coherent backscatter
- mean topographic slope
- mean object diameter

Summary of observed known small bodies

	main-belt asteroids	Trojans & Hildas	comets	NEOs	TNOs	Centaurs
observations	2,013,279	50,056	1,052	6,586	454	336
unique objects	221,402	5,259	129	1,257	48	27
fraction of known	0.39	0.55	0.06	0.13	0.03	0.13

Summary of observed known small bodies

Discovering new small bodies

- kd-tree-based algorithm ran on residual ~18 million detections
- searched for ≥ 3 points (of constant velocity-spacing) spanning ≤ 48 hours
- speed range of 0.01 to 1 arcsec/minute targets main-belt, excluded near-Earth and trans-Neptunian objects
- Manual screening rapidly eliminates the ≥ 95% false-positives
- 1500+ newly-designated multi-night objects confirmed by the Minor Planet Center, including 3 new comets

comet 2009 KF37 discovered in PTF

A metric for extendedness

 $\lambda \equiv \frac{\text{total object flux}}{\text{brightest pixel flux}}$

$$\mu \equiv \log(\lambda_{\text{object}}) - \log(\lambda_{\text{stars}})$$

 $\mu > 0 \implies$ extended $\mu < 0 \implies$ concentrated

Systematic (non-cometary) extendedness

Spacewatch

2012 KA51

f = true fraction of main-belt objects (≥ 1 km) that are MBCs

 $f_{\min} = \frac{2 \text{ MBCs}}{5 \times 10^5 \text{ main-belt objects}} = 4 \times 10^{-6}$

 $S = \text{the PTF sample: 2 MBCs out of } \sim 2.2 \times 10^4 \text{ main-belt objects}$

Baye's Theorem:
$$P(f|S) = \frac{P(S|f) \times P(f)}{P(S)}$$

log-constant prior: $P(f) = \begin{cases} -\frac{1}{f \log(f_{\min})} & f_{\min} < f < 1\\ 0 & \text{elsewhere} \end{cases}$

$$P(f|S) = \frac{P(S|f) \times P(f)}{P(S)} \qquad P(f) = -\frac{1}{f \log(f_{\min})}$$

C = cometary detection reliabilityn = 2 = number of MBCs detected in sample S $N = 2.2 \times 10^4 =$ number of main-belt objects in sample S

binomial to Possion:
$$P(S|f) = \frac{N!}{n! (N-n)!} (Cf)^n (1 - Cf)^{N-n}$$

 $\approx \frac{(NCf)^n}{n!} \exp(-NCf)$
normalization: $P(S) = \int_{f_{\min}}^1 P(f)P(S|f)df$

$$P(f|S) = \frac{f^{n-1}\exp(-NCf)}{\int_{f_{\min}}^{1} f^n (1-Cf)^N df}$$

$$\propto f^{n-1} \exp(-NCf) \quad f_{\min} < f < 1$$

 $P(f|S) \propto f^2 \exp(-NCf)$ $(4/10^6) < f < 1$

Summary of work

- Our kd-tree-based software efficiently extracts known and new objects
- Our sample contains \sim 40% of known main-belt objects \gtrsim 1 km in diameter
- Our cometary-detection robustly flags known main-belt comets, and has discovered at least five new (non-main-belt) comets
- For a log-constant prior and 2/3 detection efficiency, our results imply a 95% probability of < 33 MBCs per 10⁶ main-belt asteroids

Future work

- Implement orbital-period-baseline photometric variation (including nulldetections), possibly incorporating MPC data, as a detection method for unresolved MBCs
- Finish screening of new object discoveries and process post-July-2012 data
- Utilize the PTF dataset for phase-function Hapke modeling