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ABSTRACT

We discuss object classification for a multicolor survey of high-latitude fields from the Digitized Second
Palomar Observatory Sky Survey (DPOSS) and the resulting Palomar-Norris Sky Catalog. Two methods are
used to perform automated image classification for star-galaxy separation in DPOSS. As a source of classifier
training/testing data, we employ an unprecedented 500 field collection of CCD photometry in the Thuan & Gunn
gri system obtained with the Palomar 60 inch (1.5 m) telescope. We have trained artificial neural network (ANN)
and decision tree (DT) image classifiers using images of ~4000 galaxies and ~3000 stars classified with FOCAS
on 52 deep CCD images. We assess the systematic errors in our classifiers as a function of apparent magnitude. To
model the loss of galaxies through misclassification and the contamination of our galaxy samples by misclassified
stars, we compare the DPOSS ANN+DT image classifications with image data from 46 CCD fields on 21 POSS-1I
fields not used in the initial training/testing process. We assess these same functions in a more stringent manner by
comparing classifications of DPOSS images common with different fields via the plate overlaps. These tests are
combined to derive analytic descriptions of sample incompleteness and contamination for future use in our
assessment of multicolor galaxy number counts and the two-point angular correlation function. Finally, we derive
star and galaxy number counts from 341 DPOSS fields covering a total of 7756 deg? in both the north and south
Galactic hemispheres. These data are used to establish a final correction for stellar contamination in our galaxy
samples and to demonstrate the level of classification homogeneity in the DPOSS g and r catalogs drawn from a
wide range of Galactic latitudes.
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1. INTRODUCTION

The Digitized Palomar Observatory Sky Survey (DPOSS) is
a digital version of a three-band photographic survey of the
northern sky (POSS-II; Reid et al. 1991), which has been re-
leased to the astronomical community (Djorgovski et al. 2003).
The principal product of DPOSS is the Palomar-Norris Sky
Catalog (PNSC), which will contain approximately 50 million
galaxies and over 2 billion stars, down to the equivalent blue
limiting magnitude of 22. An extensive discussion of the pho-
tometric calibration of the survey is given in Gal et al. (2004).
An important addition is a program to collect extensive CCD
calibration data in the gri system of Thuan & Gunn (1976) with
the Palomar 60 inch (1.5 m) telescope (P60). This represents a
considerable advance over previous optical sky surveys based
on large-format photographic plates.

A great variety of scientific projects is possible using this
major data set, including studies of galaxy clustering and of
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the large-scale structure of the low-redshift universe (Gal
et al. 2003) as tests of structure formation models; galaxy
counts at moderate depth as a function of magnitude, color,
and morphology to be used in tests of galaxy evolution over
the past few gigayears; searches for high-redshift (z > 4) qua-
sars (Kennefick et al. 1995), unusual quasars (Brunner et al.
2003), and active galactic nuclei at lower redshifts; mass
optical identifications of radio, IR, and X-ray sources; gener-
ation of objectively defined catalogs of clusters and groups
of galaxies; a search for previously unknown sparse globu-
lar clusters and dwarf spheroidal galaxies; the cataloging
of low surface brightness galaxies; a search for objects with
peculiar colors or variability; galactic structure studies; and
many others. The success of many of these scientific programs
rests heavily on our ability to draw reliably pure star or galaxy
samples. In this paper we describe methods used to perform
automatic star-galaxy separation using supervised learning
techniques via artificial neural networks (ANNs) and decision
trees (DTs). These powerful techniques map a well-defined
multivariate image-parameter set to an output set of image
classes.

A preliminary classification scheme using DTs for DPOSS
was described by Weir et al. (1995a). These results were
based on four pairs of J and F' POSS-II plates and a relatively
small number of calibrating CCD fields. This paper is based
on an analysis of 352 J and F POSS-II plate pairs and more
than 500 calibrating CCD fields. A variety of new image seg-
mentation and pattern classifier issues are discussed. Hence,
this paper represents the improved and more comprehensive
classification methodology used for the final catalog.
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2. INPUT DATA AND CATALOG CONSTRUCTION

Detailed descriptions of the plate scanning and initial
DPOSS catalog construction are given in Weir et al. (1995a,
1995b, 1995¢), but we briefly review the important points. The
Sky Image Catalog and Analysis Tool (SKICAT) was designed
to process large digital scans of the POSS-II photographic
plates taken with J, F, and N emulsions, which are subse-
quently calibrated to the gri system. The initial processing of
these scans involves the determination of the plate density—to—
intensity transformation via a set of densitometry spots ex-
posed on each POSS-II plate, determination of the plate density
saturation level, and determination of the mean sky level. Next,
a robust background-mapping algorithm is applied to filter out
discrete image sources and produce a map of the mean level
and standard deviation of the sky background across the plate.

For image detection and measurement, SKICAT uses the
Faint Object Classification and Analysis System (FOCAS;
Valdes 1982). The entire plate is processed in a grid of 13 x 13
partially overlapping subregions, which we refer to as foot-
prints. The sky level and noise maps for each footprint are used
to set an image detection threshold that is some fraction of the
local background noise. FOCAS detects objects in the form of
groups of connected image pixels whose values lie above the
local threshold level. Next, a series of rough classification rules
are applied to the FOCAS catalog of each footprint to establish
a set of stars for that region, and these sources are used auto-
matically by FOCAS to model the two-dimensional local
stellar point-spread function (PSF) for the footprint. Having
established the mean PSF, a FOCAS analysis stage is run in
which each detected object is scaled in the intensity and spatial
domains to best match this PSF model. The two parameters
describing this fit are referred to as scale and frac. A FOCAS
image classification is assigned on the basis of scale and frac
alone. Finally, FOCAS determines which detected images are
actually a merged set of overlapping detections, and an algo-
rithm is applied to deblend these cases and determine the
positions, image classes, and photometric parameters of each
constituent. The final set of homogenized image parameters
is finally organized by plate footprint into a Sybase data-
base catalog that may be queried for purposes of subsequent
analysis.

As described in Weir et al. (1995b), the initial set of FOCAS
runs are applied to spatially overlapping plate regions. Follow-
ing FOCAS treatment of all these regions, SKICAT conducts
an automated overlap comparison to bring the photometric
properties of each footprint onto a common mean system. An
essential part of the SKICAT system is an automated, objective
classification of detected sources as ““stars” (i.e., PSF-like)
or “galaxies” (i.e., more resolved than the PSF). Supervised
classification algorithms using superior training data sets de-
rived from the CCD calibration images are implemented to
push the depth of the accurate classifications considerably
deeper than would be possible with the plate data alone. We
have improved on and expanded the original SKICAT source
classification methodology of Weir et al. (1995b) as described
below.

In addition to scale and frac, the parameters we are
concerned with here for refining star-galaxy separation are
total magnitude (MTot); isophotal image area (Area), which is
the number of pixels constituting each object; core magnitude
(MCore), which is the integrated magnitude of the central 3 x 3
set of pixels in each image; and the second moment of the
intensity-weighted radii of all pixels composing each image

(IR2). As we discuss below, all of these photometric parame-
ters are used in some magnitude range to perform star-galaxy
classification.

The classical FOCAS approach using scale and frac rules
is superior in the regime of faint sources, g > 20.5, for which
we can no longer reliably map the stellar locus (see § 4.1).
Similarly, for bright, compact sources (i.e., stars with g < 17)
the core saturation in DPOSS images is substantial, and neither
PSF fitting nor locus mapping is successful. For most objects
(17 < g £ 20.5), parameter spaces may be formed using pho-
tometric parameters such as Area, MTot, MCore, and IR2,
which provide substantial segregation between stellar and ex-
tended sources (i.e., stars and galaxies), and this approach is
used in SKICAT to provide bright object image classes via a
set of parameter-based classification rules. We discuss the use
of two classifier induction methods that use these parameters
to provide improved object classification.

We stress that our object classifications are based on image
morphology alone, i.e., on how well a given source is repre-
sented by a PSF appropriate for that magnitude and that plate.
In principle, one could also use colors as an indicator that a
source is a normal star, since the stellar temperature sequence
forms a well-defined locus in the color-color parameter space.
However, that would result in misclassification of unresolved
objects (e.g., quasars) with colors different from those of nor-
mal stars. Moreover, with only three bands used in DPOSS and
with the calibration of one (the N-plate material) being highly
problematic, this color-based classification approach is not
suitable. Thus, in this context, by “star’’ we mean simply an
unresolved source in our images.

3. CLASSIFIER INDUCTION

In the last two decades several different methods have been
suggested for automatic object classification (e.g., Sebok 1979;
Heydon-Dumbleton et al. 1989; Odewahn et al. 1992; Weir
et al. 1995b). Modern classifiers use the nonparametric ap-
proach in which a set of classification rules or weight networks
is constructed on the basis of examples of accurate classifica-
tion (from deep CCD imaging, for example). Currently popular
techniques include decision trees and artificial neural networks.
The main advantage of such approaches is that the rules are
created in an objective and reproducible way. Detailed descrip-
tions of DTs and related methods are presented in Fayyad
(1991) and Fayyad & Irani (1990). Another approach is to use
ANNSs to map sets of input image-parameter vectors to output
image classes. This method, applied to star-galaxy separation
by Odewahn et al. (1992), has the advantage that quite com-
plicated, nonlinear mappings are able to solve complicated
problems using even overlapping parameter spaces. This method
lends itself well to work in the faint regime of photographic
analysis, for which such issues as nonlinear effects and low
signal-to-noise ratio (S/N) are profound.

3.1. Decision Trees and the RULERS System

The essence of the machine-learning (ML) approach is to
extract rules from a given data set, called attributes, that can be
applied to similar data. One of these methods is a DT (Quinlan
1986). For a given set of attributes this method creates nodes
that represent tests applied to the attribute values. The outgoing
branches of a node correspond to the possible outcomes of the
test at the node. For a detailed discussion about DT method-
ology and its application to a restricted set of the DPOSS data,
we refer the reader to Weir et al. (1995b).
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There are several algorithms for generating DTs (Quinlan
1986, 1990). A basic problem with DT generation algorithms is
that even in a good tree some leaves are overspecialized or
predict the wrong class. If there are measurement errors in the
attributes, the DT will tend to fit to the noise and hence not
generalize well to data that are out of sample. In DTs the data is
partitioned quickly into smaller subsets, which accelerates the
learning process while simultaneously creating overspeciali-
zation of the leaves in the tree. The RULER system, developed
for SKICAT, was designed to extract only the best rules from a
set of multiple trees trained on the same data set. The imple-
mentation of such an algorithm is described in Fayyad & Irani
(1990).

3.2. Artificial Neural Networks

It is clearly desirable to combine as much quantitative infor-
mation as possible when assigning a classification. An ANN,
discussed by Rumelhardt & McClelland (1988), provides a
means of mapping a large amount of input information defin-
ing a complicated nonlinear space to derive a best-guess classi-
fication. Neural networks are systems of weight vectors, whose
component values are established through various ML algo-
rithms that take as input a linear set of pattern inputs and
produce as output a numerical pattern encoding a classifica-
tion. This technique has been applied with great success to the
problem of star-galaxy separation by Odewahn et al. (1992,
1993). In these studies, neural network classifiers were trained
using the back-propagation algorithm. The networks consisted
of an input node layer of image parameters, two hidden layers,
and an output layer consisting of two nodes (a star node and a
nonstar node) for encoding the classifications. Systematic ex-
periments were conducted to determine the optimum network
architecture, weight-update parameters, and input image pa-
rameters (Odewahn 1995). Statistical comparisons of the ANN-
classified photographic image surveys with more reliable (but
less extensive) CCD surveys have proved this classification
method to be very robust.

4. CLASSIFICATION ATTRIBUTES

The input patterns fed to the ANN and DT classifiers dis-
cussed above consist, for DPOSS detections, of a set of
FOCAS image parameters that have been shown to segregate
the compact (star) and extended (galaxy) populations. In prac-
tice, we combine some of our parameters to produce single star-
galaxy separation parameters. In one such case we form the
difference between the MTot and MCore estimates to create a
crude concentration index, i.e., a single number that indicates
the amount of flux contained in the central area of the image
relative to the total area (the extrapolated isophotal area). An
example of this very effective parameter space is shown in
Figure 1. The tight locus of points running in a roughly hori-
zontal pattern across the plot is composed of stars. Compared
with stars, extended objects will contribute a smaller percent-
age of flux in the central 3 x 3 pixel area relative to the total
area and produce a more negative value for MTot — MCore.
Hence, the diffuse cloud of points extending below the stellar
locus in Figure 1 at all magnitudes is attributable to galaxies. In
a similar fashion, we have combined the FOCAS scale and
frac parameters in a series of simple rules to form a single
parameter that is linearly correlated with image compactness.
This parameter is referred to as the composite stellar function
(csf) and provides a simple way of using the scale and frac
information for pattern classification. DTs are well adapted
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Fic. 1.—The MTotJ—MCoreJ vs. MTotJ parameter space from a single
DPOSS J plate. The strong stellar locus, which is partially mapped by the filled
circles and the heavy curve, has a very high contrast at bright magnitudes
relative to the diffuse cloud of galaxy points in the lower portion of this pa-
rameter space. The upper and lower 2 o curves are represented by the light
lines. The majority of sources within these light lines are unresolved (i.e., stars).
Primarily because of seeing and photographic response variations, the location
and shape of this stellar locus can change significantly from plate to plate.

for discrete, irregular data spaces (like that produced in the
scale — frac domain), while ANN classifiers are best used
with continuous, smoothly varying input parameters. Thus, we
have opted to use the csf parameter as input for both the ANN
and DT classifiers developed in DPOSS. These basic image
parameters are summarized in Table 1. The first five parame-
ters in this table are taken directly from the original FOCAS
measurements for each plate. The three normalized parameters
(names beginning with #) are the FOCAS parameters normal-
ized using the stellar locus on each plate, as described below.
Finally, we list the image classifications and their associated
probabilities.

TABLE 1
DPOSS CLASSIFICATION ATTRIBUTES FOR J PLATES

Attribute Description
MTOtJ e Total FOCAS magnitude
MTotJ — MCorel........ Concentration index from FOCAS core magnitude
TR2J i Intensity-weighted second spatial moment
Areal....cccvevieeiennne Number of pixels above isophotal threshold
CSEJ e Linear composite of FOCAS scale, frac estimates

Stellar locus—corrected MTotJ — MCoreJ

n_IR2J ..o Stellar locus—corrected IR2J
n_Areal...... Stellar locus—corrected AreaJ
Class_ann_J............. Class membership from ANN classifier
prob_ann_J............. Probability of ANN class estimate
Class_dtree_J ........ Class membership from DT classifier

prob_dtree_J.....

Probability of DT class estimate

Class_FOCAS_J .. Class membership from original FOCAS classifier
prob_FOCAS_J.. .. Probability of original FOCAS class estimate
Class_BEST_J........... Class membership from final classifier

Note.—The classification-related image attributes in a DPOSS record are
shown here for a J-plate detection. Each of these attributes is also tabulated for
F- and N-plate sources.
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FiG. 2—Mean stellar loci from DPOSS star-galaxy separation parameter
measured on 25 different DPOSS J plates. Each symbol type represents a
different J plate. The location of the magnitude-binned locus mean (fop) can
vary significantly over different plates. The width of the stellar locus (bottom)
as measured by the magnitude-binned standard deviation is rather homoge-
neous over the POSS-II plate material. Magnitude units are used as the y-axis
unit in each panel. Hence, plate-to-plate variation in the width of the stellar
locus in this classification parameter is very small compared with the mean
locus displacement.

4.1. Plate-dependent Image-Parameter Variations

As discussed in Odewahn et al. (1993), the dominant source
of error in the classification of images in Schmidt plate surveys
derives from large systematic differences in the plate densi-
tometry. These differences produce substantial variations in the
shape and placement of the stellar loci for key classification
parameter spaces. We have studied variations in stellar locus
placement for all DPOSS image parameters useful for star-
galaxy separation (Mtot — Mcore, IR2, csf, and Area) for a
large number of DPOSS fields in order to assess this problem.
In Figure 2, we summarize one such study by showing the
mean stellar loci in Mtot — Mcore for 25 different DPOSS J
plates. We map the stellar locus in each parameter space using
a robust median filtering technique in overlapping Mtot bins
(the x-axis of each parameter space). At faint levels (roughly
g > 19.5 mag), all differences between extended and compact
images disappear, so to increase the contrast of the faint-end
stellar locus we have used a csf filter to isolate FOCAS-
classified stars. In this way, we are able to better describe the
properties of the faint stellar loci in the Mtot — Mcore, IR2,
and Area parameter spaces. Having isolated each stellar lo-
cus in this manner, we can map the location and width of the
locus as a function of magnitude, Mtot. In the top panel of
Figure 2 we show the mean loci, and in the bottom panel we
plot the locus widths as a function of apparent magnitude for
25 different DPOSS plates. Locus width changes are relatively
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small, but the mean placement of the locus is highly plate
dependent. For the development of a universal pattern classifier
based on these image parameters, such plate-dependent var-
iations must be removed prior to classification.

One empirical way to remove these variations is to map the
stellar locus in each parameter space and then subtract it, as a
function of magnitude. For the DPOSS reductions, this pro-
cedure is performed for each footprint, using a robust locus
mapper for each classification parameter. An example of such
a mean locus fit is plotted as a solid curve in Figure 1 for
the Mtot — Mcore parameter space. The number of particularly
bright sources (MTot < 18 mag) found in a single footprint is
usually far too low to provide a useful locus map. The solution
we have adopted as a workaround is the creation of a set of
plate-wide mean loci for each parameter. These loci are com-
puted using many footprints covering the central portion of
each field. Moreover, a graphical software package is used to
guide the (human) DPOSS reducer in mapping and verifying
each plate-wide mean locus. In addition to providing a more
reliable fit to each stellar locus, this step insures that the re-
ducer must inspect each important parameter space in each
DPOSS plate catalog. This quality control step has been ex-
tremely useful in identifying catalogs with previously unde-
tected processing problems, while maintaining the objectivity
and automation of the rest of the classification process. Having
subtracted the stellar locus from each parameter space on each
plate, we are able to combine data from many different fields
to formulate a training and testing data set for the ANN and DT
pattern classifiers. An example of such a data set is summarized
in Figure 3, using locus-subtracted Mtot — Mcore parameters
from 31 different DPOSS F plates spread across many decli-
nations and observing seasons. A stellar locus subtraction is
applied to the Mtot — Mcore, Area, and IR2 image parameters
from the J-, F-, and N-plate catalogs. To denote locus-corrected
image parameters, we add the “n” prefix to each parameter
name (see Table 1). We note that no formal normalization is
required for the csf parameter, since the scale and frac val-
ues from FOCAS are estimated relative to the mean stellar
PSF adopted for each (i.e., csf = n_csf).

4.2. A Source of High-Confidence Image Classifications

As discussed in Gal et al. (2000, 2004), we conducted a
long-term CCD observing program with the Palomar 60 inch
telescope to collect calibration and image-classifier material for
DPOSS. To compile a classifier training set, we used 79 CCD
fields from this survey that are located on the 31 DPOSS fields
to assign image classes to the objects measured on the DPOSS
plates. This provided a set of 14,370 training patterns (detected
sources with image parameters and classes). This constituted
our initial training sample. For a totally independent testing
sample, we collected a set of 14,304 patterns from 46 CCD
fields located on a completely different set of 21 DPOSS fields.
This constituted our final classification quality assessment
sample. This quality assessment set was drawn from half the
number of CCD fields as was used in the training set sample,
yet it contains nearly the same number of members as the
training set. This is due to the fact, as explained below, that we
used slightly more stringent seeing and image class agreement
criteria for the CCD catalogs when selecting the classifier
training data. Hence, only the highest-quality image-parameter
sets were assembled for classifier development. These restric-
tions were relaxed when assembling the data set for a final
quality check, both to increase the number of objects used and
to more faithfully reflect the properties of the average DPOSS
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FiG. 3.—The MTotF — MCoreF DPOSS image-parameter space that is used
as part of the inputs to pattern classifiers used for star-galaxy separation. As
discussed in the text, the stellar locus has been mapped and subtracted for each
DPOSS plate. Using 31 different DPOSS plates, with no single plate con-
tributing more than 8% of the total sample, ensures that we are able to train
very general classifiers that can be extended more reliably to the entire survey.

plate and CCD material. The median FWHM for the CCD
images used forming the testing sets is 174, with quartiles
0>s = 172 and Q75 = 177.

All CCD fields have quantitative mean seeing estimates for
each of the three bandpasses (g, r, and i), and we are able to
grade the CCD fields by seeing quality. Seeing is measured
on each image by computing the median FWHM of FOCAS-
classified stars in a magnitude range of approximately 17.5 <
g < 19.75. This range was chosen to produce reliable star/
galaxy separation and images with an S/N high enough to
allow accurate estimates of the FWHM. For the image classi-
fications used in Figure 3, as well as for all of our training/
testing data sets, we have selected exclusively objects from
CCD fields that have superior seeing (FWHM < 175 measured
in r).

These seeing estimates are confirmed by comparing the
agreement between FOCAS estimated image classes in g, 7,
and 7 as a function of apparent magnitude. To measure classi-
fication quality, we fit a polynomial relation to the percentage
agreement between comparisons of the (g, ), (g,1), and (r,)
CCD FOCAS class pairs as a function of magnitude. From
these relations, we estimate the » magnitude at which the level
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of agreement falls below 90%. From a study of 100 P60 CCD
fields we found these class quality measures to be well corre-
lated with our quantitative mean seeing estimates. Even more
reassuring that we are estimating image class quality in a ro-
bust fashion is that this analysis shows that the redder CCD
bandpasses (r and i) produce systematically better classifica-
tion agreement to fainter magnitudes and have smaller seeing
estimates, as would be expected for a ground-based survey
using a CCD detector with a peak quantum efficiency around
7000 A.

Only CCD catalogs having high classification agreement
ratings and superior seeing measures have been used to es-
tablish training and testing samples for the DPOSS image
classifiers. In establishing the final image-parameter training
sets, we have applied one more constraint on the assignment
of an object class to any source used for training data: only
objects whose CCD classes agree in the g, 7, and i bandpasses
are allowed into the classifier data set. This seemingly heavy
constraint was imposed to avoid one final problem with image
misclassification in crowded regions. In heavily crowded parts
of even the best-seeing CCD images, FOCAS may be unable to
assign a reliable image class. Under the assumption that image
merging will be handled differently in different bandpasses, we
reasoned that severe crowding problems would result in var-
iations in class estimates for the different bands. By taking only
those sources with class agreement in g, , and i, we avoid the
bulk of such crowding-induced class mistakes. Following the
application of this final quality constraint, we were left with
approximately 7600 training patterns.

We should stress that the training and testing image-
parameter sets collected using this CCD database have been
assembled in a rigorous, automated, and well-defined way.
These image parameters should be considered a highly reliable
“truth set” for the development of star-galaxy classifiers. This
data set is summarized for our F-plate training/testing material
in Figure 4, where we plotted locus-subtracted image param-
eters as a function of apparent magnitude for stars and galaxies
for all of the relevant classification parameters.

5. CLASSIFICATION RESULTS WITH TRAINING
AND TEST DATA

Using the training data set described in the previous sec-
tion we have trained ANN and DT star-galaxy classifiers in
each of the three DPOSS bandpasses. The details of training
supervised classifiers of these types are discussed in Odewahn
(1997) for ANNs and Weir et al. (1995b) for DTs. Briefly, we
use some fraction of the data sample as a training set. For
both classifiers, an iterative training algorithm is used to es-
tablish the final classifier. In the case of an ANN, we use back-
propagation training to adjust the weight values in each node of
the network to minimize the mean error function, which in this
case is the difference between the network output pattern and
the target pattern (determined by whether the object is a star
or a galaxy). As discussed in § 3.1, the DT code establishes a
series of decision rules that map the input parameter sets to
class memberships. These rules are gradually pruned to opti-
mize the percentage of successful class outcomes.

For training both the ANN and DT classifiers for DPOSS,
we used the following image parameters as classifier inputs
for each bandpass: Mtot, n_MTot — Mcore, n_IR2, n_Area,
and n_csf. The n_ prefix indicates that a stellar locus sub-
traction has been applied to the image parameters on a plate-
by-plate basis. We chose to divide the data set into training
and testing samples by simply dividing the available data into
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FiG. 4—Image parameter spaces used as inputs for the ANN and DT
pattern classifiers used for DPOSS star-galaxy separators. These data were
collected from 31 different DPOSS F plates using 79 different CCD fields
observed on nights of superior seeing (FWHM < 175). Galaxies are plotted as
light-gray points, and stars as black points. The numbers of star/galaxy points
collected for each parameter are shown in the top left corner of each panel.

stars and galaxies in a series of magnitude bins. Each set was
then combined into two interleaved samples of stars and gal-
axies: one for training and one for testing. Some classifier
builders support the notion that the pattern classifier should be
trained using training samples that have the same class fre-
quency distribution as that expected for when the classifier is
used in classification mode. We view this as a risky prospect
at best, especially for our own astronomical problem. The ratio
of star to galaxy numbers will change systematically with
Galactic latitude, and this is in fact one of the very things we
will measure in the completed DPOSS survey. By splitting
the samples into roughly equal numbers of stars and galaxies in
0.5 mag wide bins spanning our range of interest, we avoid
any predisposition to class assignment on the basis of class
frequency in the training sample.

At each step in the iterative training process for each
classifier, we present the classifiers with the testing patterns to

DPOSS. III.

3097

obtain an independent assessment of classifier performance. Al-
though our data sets are quite large, we are able to achieve an
apparently high success rate for the training sample alone by
overtraining. We used classification success-rate statistics com-
puted with the test data alone to guard against this. No changes
to the ANN weights or the DT rules were applied on the basis
of these test sample statistics. For each bandpass, we summa-
rize in Table 2 the sample sizes, the magnitude range covered,
and the overall success rates achieved for each classifier, us-
ing both the training and test samples. A more meaningful as-
sessment of classifier performance is shown in Figure 5, in
which we plot the percentage of successful classifications as
function of apparent magnitude as measured by the g, 7, or i
magnitude from the CCD set. The relation used to compute
the rate of successful star classification in each magnitude bin
was

N([CCD = star] [ [Plate = star])

S. ar — )
. N(CCD = star)

(1)

and the relation used for galaxy classification was

N(I[CCD = gal| [ [Plate = gal))
N(CCD = gal) '

(2)

Sgal =

We note that in these two previous equations it is assumed
that the classifications provided by the CCD data are com-
pletely accurate, which is only applicable as a first approxi-
mation in the magnitude range within which we believe the
current plate data can be meaningfully used (15.0 < r < 19.5).
Even in this range, the significantly poorer seeing and larger
internal variance of the plate data heavily outweigh errors in
CCD classification. At fainter magnitudes, the CCD classifier
also becomes unreliable, and we do not recommend using our
classifications at » > 19.5.

5.1. Image Classification Probability Estimates

The ANN and DT image classifiers each produce, in addi-
tion to a “best-guess” class estimate, a probability estimate
that can be used to measure classification confidence. The node
values in the output vector of an ANN are in some sense
the Bayesian “‘a posteriori” probability that the input vector is
drawn from the class associated with that node (Richard &
Lippmann 1991). The use of this probability as a measure of
classification confidence in the star-galaxy separation prob-
lem is demonstrated in Odewahn (1995). Similarly, the DT
classifier evaluates the probability that an output class as-
signment (averaged over all class conditions in the rules set)
is due to chance. For both ANN and DT classifiers, we have

TABLE 2
DPOSS CLASSIFIER TRAINING STATISTICS

Class Band Nstars Ngals S(TRAIN) S(TEST) Mag. Range
g 1182 1182 92.3 92.1 16.0 < g <21.0
g 1182 1182 91.0 90.4 16.0 < g <21.0
r 1188 1187 94.5 93.7 16.0 < r <205
r 1188 1187 94.9 92.9 16.0 < r <205
i 918 918 92.5 93.4 15.0 <r<20.0
i 918 918 94.0 91.4 15.0 < r <20.0
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Fic. 5—ANN and DT classifier success rates as a function of apparent magnitude. The right-hand panels are for stars, and the left-hand panels are for
galaxies. Each row of panels represents a different classifier for a bandpass. Training data are connected with solid lines, and the independent test samples are
connected with dashed lines. Star relations are plotted with star symbols, and galaxy relations are plotted with open circles.

renormalized these probabilities to be in the range 0.5-1.0,
where the value of 1.0 indicates a high degree of classification
confidence and values near 0.5 indicate large uncertainty. As
summarized in Table 1, we catalog the probability associated
with the image class predicted by these two types of pattern
classifiers.

6. MORE STRINGENT ASSESSMENTS
OF CLASSIFICATION QUALITY

We have applied a series of checks to verify the quality of
the final DPOSS image catalogs. On the basis of our estimated
success-rate functions derived during classifier training, we
found little evidence for choosing one pattern classifier over
the other. Indeed, the two methods appear to be very similar
in quality, which suggests that our ability to estimate correct
image classes is limited by the quality of the image parameters
and not the pattern classification algorithm. To verify the
quality of our final catalogs, we conducted several checking
exercises. These tests can be divided into two categories:
(1) comparisons between image classifications from more
than one plate for sources located in plate overlap zones and
(2) comparison between DPOSS images classes and those
from CCD images in DPOSS fields not used in classifier
training. In the first case, we wish to confirm that classifier
performance is consistent with that predicted by the success-
rate relations of Figure 5 and not severely degraded by optical
distortion effects near the plate edges. In the second case, we
use a completely independent test sample that excludes all of
the DPOSS fields used in classifier training to confirm the
success-rate functions and to investigate the contamination of
star/galaxy catalogs drawn from DPOSS.

6.1. Plate Overlap Comparisons

Following Odewahn (1995), we performed a consistency
check that is not limited by the availability of CCD calibration
fields and involves a large number of sources. A plate overlap
analysis was performed in which the spatially overlapping
sections of plate catalogs were positionally cross-matched. The
image classes assigned to each cross-matched source were then
compared as a function of DPOSS magnitude, in the same
manner as the CCD test described below. In reality, this ap-
proach represents a significantly more rigorous test; in the
CCD test, we can consider the CCD samples, which are of
much higher weight, to be essentially error free in the magni-
tude ranges in which the tests are conducted. In the plate
overlap analysis, we are comparing two class samples that are
characterized by the same level of misclassification, and hence
our errors added in quadrature will produce a roughly v/2 in-
crease in class-comparison scatter. In addition, this analysis is
more subject to errors caused by positional cross-matching in
crowded fields, since we have no straightforward way of ex-
cluding such cases from the analysis. Finally, as discussed by
Gal et al. (2004), photometric errors near the plate boundaries
due to optical vignetting are significant. We expect classifier
performance to degrade near the plate edges solely as a result
of decreased relative S/N in the images for each magnitude
bin used in our analysis. On the other hand, we might consider
this overlap analysis a worst-case assessment of the errors
resulting from many different sources. These results, based on
a large percentage of the catalogs, can be considered a good
consistency check and an honest upper limit to the expected
classification errors. In Figure 6 we summarize the results of
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Fic. 6.—Percentage agreement in class assignment for stars (leff) and galaxies (right) observed in overlapping regions of 20 DPOSS plate pairs. This is a more
rigorous test of image classification in the DPOSS catalogs, compared with the CCD-based training data of Fig. 4, since it folds together errors due to image
detection and parameterization, as well as the systematic errors due solely to the pattern classifier (i.e., the gradual inability to assign classification as image
resolution and S/N decrease). A total of 43 overlap zones were used in the final 36 plate survey area. The minimum area allowed for an overlap region was 5.0 deg?,

excluding the use of corner zone overlaps.

our classification comparisons from 43 overlap zones in a 36
field survey conducted at the north Galactic hemisphere (NGH).

We call the reader’s attention to the fact that percentage
agreement in this case is measured solely as a percentage of
matching classifications in adjacent plates and does not take
into account the proper probability estimates, as was done in
Hambly et al. (2001). Thus, this figure mainly demonstrates
that our classifier provides consistent class estimates among
plates. In addition, for reasons discussed earlier, the overlap
areas are not the most appropriate for rigorous estimates of the
classifier success. This accounts for the large scatter present in
both panels of Figure 6.

No attempt was made to improve star-galaxy separation at
the bright end (g < 17.0), as the attributes originally measured
in FOCAS are severely affected by the nonlinearity of the
density measurement on the plates. Even the most modern
pipelines (SDSS for instance) have difficulties classifying large
objects, requiring separate processing that is outside the scope
of this paper. However, we include the bright end in the most of
the plots in this paper to emphasize the degradation of our data
and ML algorithms at these magnitudes, exhibiting the limits
of applicability of the present data.

6.2. Classification Success Rates from CCD Comparisons

For a final DPOSS classification quality assessment, we
cross-matched 46 P60 CCD catalogs on 21 DPOSS fields
that were not used in classifier development. This procedure

allowed us to gather a large testing set, with the advantage that
we were testing DPOSS plate catalogs that were in no way
involved in the development of the DT and ANN image clas-
sifiers. Using these CCD gri samples, we were able to rederive
our classification success-rate functions in each DPOSS band-
pass. As with our classifier training sets, ground truth in every
case is derived from objects for which the g, », and i CCD
(FOCAS) classifications agreed. We stress that no data cleaning
was applied (i.e., no attempt was made to interactively reject
outliers in classification parameter spaces) prior to calculating
the success-rate functions. Hence, this final analysis reflects
more faithfully the quality of data samples drawn from a typi-
cal DPOSS catalog query. The success rates derived in this way
are summarized in Figure 7. For convenience, we used spline
fits to the J, F' data in Figure 7 to tabulate the average classifier
success rates as a function of magnitude given in Table 3. The
J- and F-plate catalogs produced superior classification re-
sults compared with the lower S/N N-plate material.

In Figure 8 we map contours of constant classification suc-
cess rate for galaxies as a function of magnitude and class
probability. Similar curves were found for star samples. Each
curve corresponds to a fixed classification success rate. Thus,
users desiring extremely pure galaxy samples of a given object
type may wish to perform a cut on the classification proba-
bilities. However, a stringent cut in probability results in low
sample completeness. This is shown in Figure 9, where we map
contours of sample completeness as a function of magnitude
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TABLE 3
AVERAGE CLASSIFIER SUCCESS RATES

Mag. Galaxy(g) Star(g) Galaxy(r) Star(r)
(1) @ ) ©) ®)
92.6 99.1 91.3 99.2
933 99.8 84.0 99.4
95.6 99.9 84.7 99.0
96.4 98.6 87.5 98.4
96.9 97.8 88.7 97.4
96.1 96.9 88.2 90.8
94.8 92.2 87.4 76.9
92.5 79.2 82.5 59.1
81.2 61.4 66.9 48.6

Notes.—Following a magnitude in col. (1) we list the percentage success
rate for classifying galaxies and stars in the g and » bands computed from
spline fits to the data in Fig. 7. Since N-plate classifier results were much less
useful, we delete them here.

and class probability. For instance, to select a sample of gal-
axies that is 90% pure at » = 19 mag, it is necessary to apply a
probability cut of prob_ANN_F > 0.8. This results in a com-
pleteness of only ~90%, however.

6.3. Catalog Contamination Rates from CCD Comparisons

Since the surface density of stars varies greatly over the sky,
while the surface density of galaxies (corrected for extinction)
remains roughly constant, the contamination signal (e.g., stars
misclassified as galaxies) can vary greatly across the sky.
Therefore, any single estimate of the contamination (as pre-
sented in Weir et al. 1995b, for instance) is insufficient. This is
a major but solvable problem for many projects and for any
sky survey, yet it is seldom addressed with the care it requires.

In our analysis of the classification success, we suffer from
the opposite problem. Because most of our CCD imaging tar-

0.9

0.8

ANN Class Probability
0.7

0.6

g magnitude

ANN Class Probability

0.6

gets are Abell clusters, the relative frequency of galaxies com-
pared with stars is higher than in the average field. Therefore,
we will overestimate the contamination rate of true stars by
galaxies misclassified as stars.

To alleviate this problem, we have compared the galaxy
counts in our Abell CCD fields with those in some blank fields
that were observed under the same conditions. As shown in
Figure 10, we find that our Abell fields have approximately
twice as many galaxies as those in blank fields at comparable
Galactic latitudes, a trend that persists at all magnitudes of
interest. Based on this finding, we chose to apply a correction
factor 3 (&4) to the stellar contamination rate (i.e., we divide
the rate of “false” galaxies by 2) and increase the galaxy
contamination rate by the same factor (since the number of real
galaxies in a typical field will be half that in our CCD point-
ings). A complementary approach based on the analysis of
calibrated star/galaxy number counts drawn from a large area
of the sky is presented in § 8.

Following Weir et al. (1995b) we assess the contamination
in magnitude bins for each classifier trained in each bandpass.
Stellar contamination (misclassified galaxies contaminating
stars) is given by

_ BN([CCD = star] ) [Plate = gal])
Couar = N(CCD = star) ' ®)

Galaxy contamination (misclassified stars contaminating gal-
axies) is given by

N(ICCD = gal] () [Plate = star]) 4
BN(CCD = gal) ' “)

Cgal =

Galaxy catalog contamination functions estimated for each
classifier are shown in Figure 11, in which we plot the per-
centage contamination as a function of apparent magnitude.

0.9

0.8

0.7

r magnitude

Fic. 8.—Contours of constant classification success rate for galaxies as a function of magnitude and class probability. Each curve corresponds to a fixed
classification success rate. Given a minimum probability requirement in drawing a DPOSS sample, the user can determine the magnitude range over which a
classification success rate is maintained. Although these curves were computed from galaxy samples, nearly identical curves were derived for DPOSS star samples.
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Fic. 9.—Contours of sample completeness as a function of magnitude and class probability. In this case, completeness refers to the percentage of sources not
eliminated from a sample by restricting the classes to have a probability greater than the limit specified on the y-axis. For a given magnitude, it is possible to
determine the probability restriction for which a sample will remain 95%, 90%, 80%, or 70% complete compared with a sample drawn using no probability
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Fic. 10.—Star and galaxy number counts from the Palomar 60 inch CCD
fields discussed in Gal et al. (2000, 2004). These data were used to establish
image classifier training and testing samples and to compute functions pre-
dicting catalog completeness and contamination as described in the text.

The contamination function is strongly dependent on the true
density of contaminating objects on the sky, and hence the
galaxy contamination function will be strongly dependent on
Galactic latitude. The sample of fields used for this exercise
has (b) = 43°. Strictly speaking, it is necessary to derive a
contamination function for the range of » used to construct a
given catalog. We include the functions shown in Figure 11 as
a purely illustrative example.

More accurate tests of the classifier accuracy would require
a homogeneous, wide-area catalog constructed from a signifi-
cantly higher angular resolution data set, either from deep,
high-quality ground-based imaging or HST data. While some
such data are available, the construction of photometric cata-
logs from existing archives that would cover a significant
number of plates is beyond the scope of this paper. We note that
our CCD imaging data is of comparable quality to modern
surveys, such as the SDSS.

7. FINAL CLASS ASSIGNMENTS
IN THE DPOSS CATALOG

Each JFN-plate set in DPOSS was reduced as a matched
catalog set. The class for each detected source is a numerical
value that is summarized in Table 4. As discussed in § 2, all
detected sources were assigned a FOCAS class based on the
scale and frac parameters, as outlined by Valdes (1982). In
cases in which FOCAS split a detection into multiple sources,
it was determined that several of the attributes used by the
ANN and DT classifiers discussed in § 3 were computed incor-
rectly. Specifically, the values of Mtot — Mcore, IR2, and Area
are not properly evaluated for the child sources. In such cases,
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the entire data set. In the bottom two panels we show the same functions except that a classification probability level of >0.8 is required. The sample of fields used
for this exercise has (b) = 43°.
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TABLE 4
SumMarY oF DPOSS NuMEericaL CLASS ASSIGNMENTS

Numerical Class Source Type

Star

Galaxy

Noise (FOCAS)
Long (FOCAS)
Diffuse (FOCAS)
Fuzzy star (FOCAS)

Note.—FOCAS (Valdes 1982) classes determined in the ini-
tial DPOSS pipeline reductions were retained if a source was split
into multiple sources.

the original FOCAS class is adopted. In the case of unsplit
sources, which comprises the majority of the catalog at r <
19.5 mag, both ANN and DT class estimates were computed
for every source detected in a given band. As we have shown in
§ 6, the ANN classifier generally gave slightly superior classi-
fication results, and hence for each bandpass the ANN class is
adopted as a “best” classification for each cataloged source.
In rare cases, one or more of the catalog attributes for a source
falls outside of the acceptable range used in training the ANN
classifiers. In these case, the DT class values was adopted. The
general user will desire a single class value that can be queried
for any object, and hence we have computed a final numerical
class value, ClassBEST. Initially, we investigated using the
class predicted by the plate having the superior seeing. How-
ever, numerous tests showed that the J-plate classification esti-
mates were superior to those from the F or N plates, and hence
we simply adopted the J-plate classification as the best class.
For objects having no J-plate detection, the F-plate class was
adopted. Finally, for single N-plate detections, the N-plate clas-
sification was adopted for ClassBEST.

8. GALAXY COUNTS: A FINAL CONSISTENCY CHECK

As a final check of the DPOSS classification quality we
computed the star and galaxy number counts in g and » on 341
DPOSS fields covering a total of 7756 deg?. The rigorous set of
tests described thus far provide well-defined functions to pre-
dict the levels of contamination and classification completeness
in a catalog drawn from DPOSS. All of these derivations are by
necessity drawn from data sets derived from cross-matching
DPOSS and CCD-based image catalogs and hence represent a
restricted sample. For instance, sources whose image parame-
ters, and hence object classifications, are degraded by image
crowding are also likely to have discrepant catalog centroid
positions. Such sources are frequently dropped from a CCD-
DPOSS cross-match, resulting in a data set that gives an overly
optimistic estimate of the final catalog quality. To gain a more
realistic appraisal of our catalog, we mapped source counts
across a wide area of the sky, in both the north (NGH) and
south (SGH) Galactic hemispheres. All catalogs were photo-
metrically calibrated as described in Gal et al. (2004), and
we adopted Galactic extinction corrections following Schlegel
et al. (1998). Number counts were computed using our smallest
spatial areal unit, the 30’ x 30’ footprint cells of DPOSS. As-
suming that galaxy counts in the range 16 < g, < 20 should
be uniform in the mean over a 25 deg? field (i.e., the size of the
digitized area of the POSS-II plates), we computed g and r»
galaxy counts over 341 DPOSS fields and determined the level
of plate-to-plate variation present in our catalogs. The same can
be done for stellar data, but a large variation in stellar counts due

to Galactic structure makes such an analysis highly dependent
on the adopted Galactic structure model. The main point is that
we should be able to construct global number counts and den-
sity distribution maps that are relatively free of the statistical
imprint of the scale size of a POSS-II Schmidt plate.

In Figure 12 we show the g galaxy counts as derived from
the ClassBEST DPOSS estimates described in the previous
section. In this case, we used catalog sources drawn indepen-
dently from the g-band and r-band detections. Using only those
galaxies detected both in g and r decreases the total number of
sources at the 5%—10% level over the range of magnitudes
shown in Figure 12 and systematically decreases the slope in
the number counts by 2%—3%. We plotted number counts in
Figure 12 drawn from five ranges of absolute Galactic latitude,
|b|, and a clear trend is evident, such that the mean density of
galaxies at g = 18.5 mag is systematically higher at low Ga-
lactic latitude. For all fields in this range of |b| we fitted a linear
regression to the count sets of the form

log ¥ = a(m — 18.5) + log p. (5)

Here U is the number of sources per area in square degrees in
a 0.5 mag wide binning interval. The value of p is expressed in
the same units, but refers to the object number density at a fixed
magnitude value. The value of g, = 18.5 mag was chosen as
a fiducial magnitude point since it was judged to be stable in
classification and photometric quality over many DPOSS fields
for both stars and galaxies in the J- and F-plate catalogs. Using
all of the data in the range 30 < || < 90 and the magnitude
interval 18 < g <20 we obtained a slope of a =0.443 +
0.002 and a mean density of logp =1.984 + 0.001 at g =
18.5 mag. This mean linear fit to the data is shown as a heavy
solid line in Figure 12. In the right-hand panel of Figure 12
we show the residuals of each count set relative to this mean
number count fit, revealing more clearly the strong trend in
mean count level with |b|.

In Figure 13 we show the fitted density of galaxies at
g, = 18.5 mag (i.e., log p for galaxies by DPOSS field) as a
function of the local stellar density (log p for stars) at g, =
18.5 mag. The same trends are evident using linear regressions
from individual DPOSS footprints, but plate-wide solutions
make the trend smoother and more well defined. In each panel
of Figure 13 we plotted a model line predicting the relative
increase in the number of galaxies if some portion of galaxies
are actually misclassified stars. This problem becomes extreme
at low Galactic latitudes for which the number of misclassified
stars will contribute substantially to our galaxy catalogs. In
Figure 13 we used stellar classification error rates of 9% at
g,r = 18.5 mag to produce the model curves, for which the
excess number of observed galaxies is clearly well explained by
classification errors. The rather high error rate of 9% seems
excessive compared with the stellar success-rate curves plotted
in Figures 5 and 7. However, we stress that these errors involve
other factors. As with the plate overlap analysis of Figure 6, we
must now consider errors introduced by variations in image
matching and plate detection limits. Even if we neglect the
requirement of a g, matched detection, we can still suffer
systematic errors because of the fact that superior classes are
drawn from the J-plate material. If a large relative fraction of
F sources fail to match with the correct J-plate detection, then
the inferior F classification alone will be used in assigning
an image type in the catalog. In reality, our error rate of 9%
is quite comparable to the results of Figure 6 in the range
18 < J,F < 19.
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Fic. 12.—Left: Galaxy counts in g for five different ranges of absolute Galactic latitude, |b|, covering approximately 7000 deg” of sky. The solid dark line
represents the mean of all five sets. The g magnitudes were corrected for Galactic extinction following Schlegel et al. (1998). The two lowest latitude sets clearly
show a systematic increase in mean galaxy density. Right: Count residuals relative to a linear fit to the mean count set. The same symbol notation from the counts
panel applies here. A statistically significant trend in mean count level with || is present. This trend, presumed to be the result of stellar contamination, is present to
similar degrees in both the northern and southern Galactic hemisphere data. Very similar results were derived for the r galaxy counts.
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Fic. 13.—Left: Trend in galaxy number density at g = 18.5 with measured stellar number density at g = 18.5. Right: Trend in galaxy number density at » = 18.5
with measured stellar number density at » = 18.5. The solid line in each represents the number of galaxies we expect to observe if 9% of the local star population
is misclassified. This level of galaxy catalog contamination will increase substantially with decreasing Galactic latitude.
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In Figure 14 we show the same number counts of Figure 12,
but drawn from galaxy catalogs corrected for stellar contami-
nation effects using the simple models of Figure 13. For the
mean of these counts we derived for 18 < g < 20 a slope of
a = 0.444 + 0.001 and a mean density of p = 1.896 + 0.001
at g = 18.5. Hence, the mean linear fit parameters change little
compared with our uncorrected data fits. However, as can be seen
in the residual trend panel of Figure 14, our large systematic
variation with |b| has now been substantially decreased. This en-
sures that we can use galaxy catalogs drawn from DPOSS for
statistical studies down to a Galactic latitude as low as |b| =20°.

As a final test, we used our corrected count fits drawn from
21,120 footprints in 205 northern Galactic latitude DPOSS
fields to construct density maps of the distribution of stars
and galaxies. In Figure 15 we show the star/galaxy density
maps in Flamsteed projection in g,r. We have used 205
DPOSS fields where the photometric calibration using plate
overlap and CCD standard field methods discussed in Gal
et al. (2004) were judged to give photometry for which the
1 o error in the zero point per plate is 0.07 mag. Assuming a
Gaussian distribution in plate zero-point errors and mean gal-
axy count slope of @ = 0.45, the expected plate-to-plate 1 o
variation in log p at ¢ = 18.5 would be 0.02 dex if photometric
shifts alone were causing the number count variations. The
effect on stellar number counts, which have a shallower slope,
would be less. The observed 1 o plate-to-plate scatter in the
352 DPOSS fields used in this work was found to be 0.08 dex
in both g and r for galaxies. This latter observed scatter is of

course a combination of photometry and classification errors. It
would appear, on the basis of these statistics, that the bulk of
the observed field-to-field fluctuations in source distribution
can be attributed mostly to errors in star-galaxy separation.
Moreover, such errors would likely produce deviations with
spatial scale sizes of 5°5 (the size of a DPOSS survey field) and
would produce a blocky structure in our density maps.

9. CONCLUDING REMARKS

We have developed a suite of classification methods for
cataloging the sources detected on digitized scans of the Second
Palomar Sky Survey and the resulting Palomar-Norris Sky
Catalog (PNSC). Image classifiers based on both artificial
neural networks and decision trees were developed. These clas-
sifiers take as input sets of global photometric image parameters
that are sensitive indicators of whether a source is resolved
or unresolved. To remove plate-dependent variations in these
image parameters, we developed a robust stellar locus mapping
algorithm, which is used to transform all image attributes to
a common system prior to classification. We investigated the
level of classification success and catalog contamination for
each classifier, from each of the three (JFN) plates used in the
survey. These classification tests are based both on extensive
plate overlap analysis to test the internal consistency of the
classifications in the catalog and on comparisons with 46
CCD-derived image catalogs on 21 different DPOSS fields. We
characterized how classification confidence measures can be used
to control classification success and catalog contamination as
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Fic. 15.—Four views of the DPOSS catalog from 205 photometrically calibrated DPOSS fields mapping 5280 deg? in the NGH. To achieve a roughly equal area
projection, all maps are shown in Flamsteed projection with the field center at o, 6 = 12 : 44 4+ 27 : 30 (close to the NGH). The linear size of each map is roughly
145° x 63°. We show the fitted number density of galaxies at g = 18.5 (top lef?), galaxies at r = 18.5 (top right), stars at g = 18.5 (bottom leff), and stars at r = 18.5
(bottom right). All maps have been scaled to a level of +3 o, where o is the standard deviation in count level for a single footprint computed over the entire range of
each map. Since a footprint has a linear size of 30’, only very large scale structure is visible here. The smoothness of each map indicates very little evidence for plate-
to-plate systematics in the star-galaxy separation. Such systematic errors would manifest as a distinctively blocky appearance. There is little evidence of such trends
even in areas of high stellar density at low Galactic latitudes (extreme right and left sides of each map).

a function of apparent magnitude. Finally, we made star and
galaxy number counts in a large number of DPOSS fields cov-
ering a fair portion of the sky in both the northern and southern
Galactic hemispheres to show that no statistically significant
plate-to-plate variation is present.

This paper makes use of machine-learning techniques to
establish star-galaxy separation. The ML approach offers some
advantages over traditional parametric methods. First, we can
use a large number of attributes to infer the rules for dis-
tinguishing the object classes. In addition, these ML algorithms
determine statistical classification rules allowing a meaningful
estimate of the probabilities for the final class. Another im-
portant aspect of using ML techniques is being able to fore-
see the application of methods of unsupervised classification,
allowing the data to set the relevant and distinct classes within
the sample, rather than the scientist. Recent publications still
make use of parametric approaches and report similar accu-
racies down to the same limiting magnitudes as ours (e.g.,

Stoughton et al. 2002; SDSS; Hambly et al. 2001). However, as
we move to fainter levels, the ML approaches may be poten-
tially better since the separation line subjectively defined in the
parametric approaches is difficult to set and often not repro-
ducible (see Weir et al. 1995b for further discussion).
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